

Concepts, Tools and Devices for Facilitating Human-Robot Interaction with Industrial Robots through Augmented Reality ISMAR Workshop on Industrial Augmented Reality

Santa Barbara, CA, October 22, 2006

Rainer Bischoff and <u>Johannes Kurth</u> KUKA Roboter GmbH

Overview

- Introduction
 - KUKA Robot Group
 - Motivation from a broader perspective
- AR System Requirements from an industrial standpoint
- KUKA AR Viewer
 - Implementation
 - System Architecture
 - Human-Machine-Interface
 - Video

User Survey

Summary

Outlook

KUKA Products and Services

Industries where KUKA Robots are used

Printing & paper

Automotive components

Wood & furniture

Metal products

Foodstuffs

Chemicals, rubber & plastics

Entertainment

2006-10-22 Industrial AR ISMAR 2006

Applications where KUKA Robots are used

AR Concepts, Tools and Devices for Facilitating HRI – Introduction – KUKA Robot Group

Joining

Machining

Assembling

Handling

Spot welding

Inspecting

Polishing

Palletizing

Corporate Headquarters

Headquarter, Augsburg

Sales and Training Center

Training center at Hery-Park, Gersthofen

Robocoaster

KUKA Locations Worldwide

Production of up to 8000 robots / year

IWKA Group of Companies, listed in MDAX

2005: Portfolio: 83 consolidated companies Sales: 1613 Mio € Employees: 8974 AR Concepts, Tools and Devices for Facilitating HRI – Introduction – Motivation

Industrial Robots – Where does KUKA want to go?

- maintain technological leadership in industrial robotics
- ensure the productivity of manufacturing industries
- provide small and medium sized enterprises with advanced robots and systems
- provide new and high-quality jobs
 - key business drivers
 - technology push from IT sector
 - application pull from
 - automotive
 - electronics industries
 - general industries (future applications)

AR Concepts, Tools and Devices for Facilitating HRI – Introduction – Motivation

What is Augmented Reality?

- embedding of virtual information into the real world
- position virtual objects dynamically in relation to the real world
- to give the appearance that the virtual objects exist within the real world

AR Concepts, Tools and Devices for Facilitating HRI – Introduction – Motivation

First Experiments and Results

cubic markers from six 2-D markers

various visualization options

First Experiments and Results

AR-based tutorial on how to use the 6D mouse

AR-based tool for fault detection

Augmented Reality can make life easier throughout the life cycle of a robot!

Working Principle – Key Components

KU

Optical Tracking

- markers placed in the real world
- AR-Software determines centre of markers
- virtual world is fixed relative to the real world

Optical tracking

tracking 6-D pose of camera

Mechanical tracking

- tracking 6-D pose of camera
 - by using a robot system and knowledge of the position of robot's axes and kinematic transformations
 - no need of markers during operation

but _fT^c is unknown

Set-up of Mechanical Tracking

use marker tracking to provide missing transformation $_{\rm f}{
m T^c}$

method to obtain bTm : perform hand-eye calibration and obtain marker position at the same time

Registering the Position of the Robot

use of hand-eye techniques (e.g. Tsai, Lenz)

principle set-up steps:

- mount camera at the robot flange or tool (arbitrary pose)
- move the robot to several different positions, so that the marker is always in the camera image
- positions of the robot and tracking values are gathered
- a hand-eye algorithm is run with the acquired information

result:

- known position of the robot in the marker coordinate system and
- know position of the camera in the robot coordinate system

Setting up the Scene for an AR Scenario

requirements:

- 3-D models of invisible objects to display robot-internal information, e.g.:
 - coordinate systems
 - program points
- 3-D models of all real objects for computing occlusions
 - robot
 - all other objects within the robot cell
- registration of 3-D models with the real world, i.e.:
 - knowing the position of the real-world objects
 - relative to the world coordinate system
- user needs to be supported to be able to set-up the system (!)

Occlusion Models

- Hide all or part of a virtual object when the line of sight is blocked by a real world object
 Requires 2D modeling of real world objects
 - Requires 3D modeling of real world objects

AR Concepts, Tools and Devices for Facilitating HRI – Requirements and Concepts Setting up the Scene for an AR Scenario we have KUKA 000 1 KURA we need KUKA 2006-10-22 **Industrial AR ISMAR 2006** Page 22 Bischoff / Kurth - KUKA Robot Group

Registering the Positions of Scene Objects

- two methods possible:
 - if virtual models of real-world objects are not provided:

 (1) define object vertices and construct a convex hull
 if virtual models of real-world objects are provided
 (2) move virtual models with the mouse to align them with the images of the corresponding real objects

AR Concepts, Tools and Devices for Facilitating HRI – Implementation

Details of Implementation

- Monitor based visualization
 - rapid development
 - robust
 - cost effective
- Optical tracking system
 - 6 degrees of freedom, high accurac
 - requires the use of markers
- Mechanical tracking system
 - 6 degrees of freedom, high accurac
 - limited range

Software

- Metaio Augmented Solutions AR ActiveX Control
- KUKA Roboter Controller Software KRC 5.x
- KUKA Augmented Reality Viewer

metaio

KUKA AR Viewer

Visualization of operating and programming information
 Test framework for a variety of system architecture concepts

KUKA AR Viewer – Coordinate Systems

worldmultiple basesmultiple tools

KUKA AR Viewer – Movement Arrows

- direction of Cartesian movement displayed at
 - origin of reference coordinate system
 - TCP

axis specific movement arrows

works with jog keys and 6D mouse

KUKA AR Viewer – Simulation Modes

- movements of robot are simulated on the shop floor
 - without altering the functionalities of teach pendant and robot controller
- robot simulation
 - test run before real program execution
 - testing for plausibility
 - simple collisions checking
- key press simulation (for teach pendant)
 - "what happened if I pressed this button..."
 - robot does not move
 - movement arrows are visualized

KUKA AR Viewer – Path Trace

- visualization of robot path by tracing the TCP
 - TCP recording over time
 - continuously
 - intermittent
 - show / hide traced points
 - distance between recorded points
 - equal distance in space
 - equal distance in time

Video KR3 Robot Training Cell

Bischoff / Kurth - KUKA Robot Group

AR Concepts, Tools and Devices for Facilitating HRI – User Survey

User Survey

- KUKA College
 - robot training classes
 - survey preparation
- Automatica 2004
 - 4 days
 - 100 filled-out questionnaires
 - estimated number
 - of interested visitors: 400-500

AR could help me understand robot training better

Yes	No
97.9%	2.1%

AR could help me with my day-to-day work with the robot

Yes	No
82.1%	17.9%

Summary

- Augmented Reality holds great potential to improve humanrobot interaction
- First prototype: KUKA AR Viewer
 - various visualization and simulation options
 - instantaneous / real-time visual feedback
- Augmented Reality is especially useful for robot training:
 - visualization of coordinate systems, robot motions and path information within the *real* robot cell
 - simulation of robot motions before their actual execution
 - gain an understanding for using the different reference coordinate systems

User survey with encouraging results

AR Concepts, Tools and Devices for Facilitating HRI – Thank you!

Thank you for your attention!

Questions?

{RainerBischoff, JohannesKurth}@kuka-roboter.de

